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Abstract. In this paper, we study one specic problem linked to text 
input techniques based on prediction and deduction lists; namely, short-
word problems. Indeed, while prediction is fast and can be easily made 
effective for long words (e.g. more than 4 characters), short words take 
longer to be typed with prediction: the time spent browsing a list-based 
interaction slows the user down. The present study compares two possible 
approaches where the user selects inside a prediction list of short words 
versus tactile exploration (native Voive Over for Apple). Results of our 
comparative study reveal that our technique reduces the overall typing
time and the error rate by 38 % compared to tactile exploration.
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1 Introduction

Touch screens rapidly and significantly replace physical keyboards on mobile 
devices. Hence, text entry is now dependent on software (or virtual) keyboards 
that are widely used by sighted people, but raise accessibility issues for visually 
impaired users. These users rely on tactile exploration with vocal feedback of 
the whole screen for entering text, which is time consuming.

In order to solve this problem, different prediction-based techniques or deduc-
tion system exist. However, if these systems are generally enhance the speed of 
text-entry for users, they are inappropriate for entering short words. For exam-
ple, within the DUCK [6] system, the use of the deduction system increases the 
input speed for words comprised of 5 characters or more. For shorter words, the 
use of the deduction system is too costly in time compared to the low number 
of characters to enter. This is even more a problem that some short words are 
very frequently used.

In this article, we therefore focus on entering short words. Our study aims 
to improve the typing of such words for use with the DUCK system. The pro-
posed interactions have therefore been designed to be easily integrated and in 
tune with the rest of the interactions already proposed on this system. Both 
proposals interactions were evaluated and compared with the text input system 
traditionally used (like VoiceOver entry system).
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2 Related Works

2.1 Adaptation of the Traditional Keyboard

Text to speech (TTS) synthesis is the most used method to assist text entry
on a mobile device coupled with a standard keyboard layout (e.g. QWERTY
or AZERTY, depending on the culture). The underlying principle is simple: the
user moves his finger onto the keyboard or hits a key, and the keys he hits or
he moves across are spoken (see e.g. Apple VoiceOver). When he releases his
finger, the corresponding character is inputted. Additional gestures can be used
as well. One big problem with that comes from the fact that the keys of a virtual
keyboard on a mobile device are very small. Thus, the risk of mistyping a letter
is quite high. The second hindrance of such a solution resides in the need for
users to go through most of the keys before finding the one they seek which has
been reported as a “painful exploration” by the users because it usually takes
some time. The offered sets of gestures might also be too complex to perform in
mobility.

2.2 Specific Text Input System

More specific text-input system exist. They are often based on a character encod-
ing which allows to limit the number of keys and thus help visually impaired
people to find their location onscreen. The most known encoding for visually
impaired people is the Braille alphabet. BrailleType [5] or TypeInBraille [4]
adapted this encoding on touchscreens. In order to do so, such keyboards mimic
a 6-dots Braille cell onto the phone screen. The characters are entered by succes-
sively activating the dots of the cell. Unlike the QWERTY standard keyboard,
these keyboards have a much easier learning phase, due to the similarity with
the Braille alphabet. On the other hand, the user must fill-in the dot matrix for
each character, which leads to a quite high Keystroke Per Character (KSPC),
hence drastically reducing text-entry speed.

Other methods, like NavTouch [2] & NavTap [3] allow the user to dynami-
cally select a letter with a specific gesture performed anywhere on the screen,
drawing a pattern on the device. These techniques are very efficient for quickly
targeting one letter. However, they generate high cognitive load to simultane-
ously remember the correct gesture, as well as the position of the typed letter
in the word.

The No-Look-Notes [1] text-entry method uses multiple fingers, relying on
the multi-touch capacities of the device. The screen is divided in different zones,
with a set of characters associated for each. The user can search for a character
among a group of letters with one finger, and confirms the selection via a split-
tapping. This method provides a fast and easy access to letters, but drastically
increases the number of taps, which slows word typing down, and may cause
muscular fatigue.



3 DUCK Keyboard

3.1 Principle

DUCK (deDUCtive Keyboard) [6] is based on typical existing keyboard layouts,
so layouts are the most used ones, meaning that most people are acquainted
with them. We decided, however, to simplify the user interaction to type letters.
The main objective was to get rid of the accurate search of each character on
the layout. Besides, we aimed to compensate for the lack of precision related to
small and mobile keyboards.

The user initially explores the keyboard to find the first letter of the intended
word. Each finger motion provides a vocal feedback, allowing the user to locate
a letter on the layout. Once he releases the key, the corresponding character
is selected. For typing the remaining letters of the word, the user doesn’t have
to explore the keyboard again. He just needs to press the location where he
believes the keys are according to the memorized representation of the AZERTY
or QWERTY layout.

The problem of such a solution relates to words shorter than four characters.
Indeed, the interaction offered in the DUCK keyboard to confirm words is com-
pensated for words that are long enough (words that contains more than five
characters), but is inefficient when used for shorter words.

3.2 Short-Word Problems

Zhai and Kristensson [7] indirectly studied the short-words problem by using
shorthand gestures for the most frequent short words of the English language.
However, these gestures are based on the keyboard layout. A novice user can
therefore use the visual keyboard representation to draw his gesture. This is
not applicable for visually impaired people since they can’t access that visual
representation. Besides, it would be too hard for the user to memorize all the
gestures.

This article aims to explore various interaction techniques in order to improve
short-word typing by visually impaired people.

4 Proposed Interactions

As we saw, the DUCK keyboard is efficient to type words longer than five char-
acter. We are thus looking for an interaction technique which would be usable
on the DUCK keyboard while allowing to type words shorter than 4 character
faster than the used one.

In order to make such a technique easily integrable with DUCK, we kept the
same interaction paradigms that DUCK typing uses:

– the user select the first character of the word he wants to type through a
keyboard exploration;



– then, in order to access the most frequently used short words, he needs no
additional key hits.

He just has to validate the first character of the word to access a list (of at
most seven words) of the most frequently used short words starting with that
character.

er diffrentes techniques d’interaction pour passer d’un mode l’autre: Our
study is thus focusing on the choice of the best interaction to switch from classical
input mode of a word with DUCK to typing a short word. As such, we chose
to compare different interaction techniques to switch from one mode to another:
In the first technique, which we called “dual-tap” validation, the user browses
the keyboard by dragging his finger to locate the letter he looks for. He then
releases his finger from the screen to select the character. The user then taps on
the screen with two fingers to validate his choice and switch to the list mode. In
the second technique, called “split-tap” validation, the character is selected the
same way, but the user has to press a second finger without releasing the first
finger. When he releases both fingers, the keyboard switch to the list.

4.1 Display and Feedback

In order to maximize the easiness of use for the user, we displayed the list in the
same way as selecting a word with the system DUCK: over the whole screen, and
each item is evenly taking the same size. They are contiguously aligned along the
width of the screen, while taking the full height. When the user browses the list,
he has to keep his finger pressed onto the screen, and the underlying elements
are read at the same time. Releasing his finger validates the word underneath.
Furthermore, in order to facilitate memorization, words are always displayed in
the same order.

5 Method

5.1 Comparison Technique and Hypothesis

In order to correctly assess our techniques, we chose to compare both of these
techniques to a third one, which keeps the tactile exploration principle: the user
maintains his pressure as he slides his finger onto the next letters, and performs
a split-tapping gesture by pressing a second finger on the screen in order to add a
letter to the word hes typing. Such an approach also allow the user to increase his
knowledge of the keyboard, while not being intrusive in the proper functioning
of the device. We named that technique the “slide-typing” approach.

We selected this method as a basis for our comparison due to the fact that
the study we made for DUCK [6], this technique was better than DUCK for
words shorter than four characters.

Our main hypothesis is that by reducing the number of actions needed to
type a short word, our interaction techniques will take less typing time; and will
thus be faster than the currently used technique. Interactions are more precise
than DUCK.



5.2 Participants

12 participants (4 women and 8 men, mean age = 24.7) with normal or corrected-
to-normal vision participated in our study. They were all blindfolded to ensure
they couldn’t see the screen at all. They had a familiar use (from a daily use)
of smart phones and mobile devices. Among them, six claimed to have a good
knowledge of the AZERTY layout due to heavy gaming experience. Our choice of
recruiting non-visually impaired participants is justified to verify the evaluated
techniques as a proof of concept.

5.3 Apparatus

Participants used a Samsung Galaxy SIII smartphone. The device has a resolu-
tion of 306 ppp for a 136.6 mm × 70.6 mm screen, a ARM Cortex-A9 MPCore
Quad core set at 1.4 GHz and uses Android 4.3. They used their finger to navi-
gate through the items. The items were synthesized from text using the Google
Translate service. The audio was trimmed to provide feedback as fast as possible,
reducing any possible delay. Nothing was displayed onto the screen during the
experiment, making the grids and items invisible to the users.

5.4 Procedure

The task was to type a short word (a word comprised of less than four letters)
as fast as possible. The task went as follow: first, the participant was read the
instruction, he was then given the word to search, then he had to type it. If
he answered a different word, we considered his answer to be wrong. Once a
session was completed, the participant was asked to answer a SUS test for each
technique, and state his preference among the interactions he went through by
ranking them in the order of preference.

5.5 Design

Each participant had to go through three sessions, one for each interaction:
dual-tap validation, split-tap validation, slide-typing. All three sessions were run
one after the other. The twelve participants were then split at random into three
even groups. The groups were then assigned interactions according to a balanced
Latin square. For every session, the participant had to go through 44 tasks. For
each task, the word to select was picked at random. However, in each series,
every initial letter is checked with two different words.

This leads us to a total of 1,584 trials.

5.6 Collected Data

In order to study the different presentations, we collected various data during the
experiment: we collected the number of items seen by the user, the time taken
for the participant to make his selection, the errors he made and the answers he
gave to the SUS questionnaire.



6 Results

6.1 Time Spent

We decided to measure the time taken by the user by counting between the
moment he entered the first letter of the word, and the moment he validated his
word.

Fig. 1. Time taken to type a word by technique and by word length (Color figure
online)

As we see on Fig. 1, for both list-based techniques, there is no significant
(p > 0.05) influence on the word length: the dual-tap validation takes on average
2.85 s compared to the 2.99 s for the split-tap validation.

The time taken to type a word using the slide-typing is dependent on the
word length (p < 0.04), and it increases along the length of the word (2.82 s for
two letter words versus 6.66 s for four letter words).

Nevertheless, it is quite apparent that both list-based techniques are signifi-
cantly faster (p < 0.05) than the slide-typing technique (2.85 s and 2.99 s versus
4.63 s on average). The list-based techniques have no significantly different typ-
ing speed. They are also operating in near constant time. In comparison, the
DUCK keyboard requires 7 s on average to type words under five characters,
which is longer than our techniques here. This validates our main hypotheses.

6.2 Error Rate

We then computed the error rate for each technique. It corresponds to the per-
centage of the wrongly selected words during the input over the total of these
words.

As seen on Fig. 2, the two techniques based on the lists offer a good accuracy
with 13 % for dual-tap validation and 11 % for split-tap validation, without any
significant effect due to the while the slide-typing technique offers a 21 % error
rate. DUCK itself offers 20 % error rate.



Fig. 2. Error rate when typing a word by technique and by word length (Color figure
online)

6.3 User Feedback

We computed the SUS score obtained for each technique given the users’ replies
to the test. The slide-typing technique scored 86, just before the dual-letter
validation technique which scored 85. The split-tap technique scored last with
79. When asked to rank the techniques, the users followed what they thought
on the SUS assessment: the dual-tap validation technique was ranked first (5
our users), while the slide-typing approach came second; the split-tap validation
technique being the most disliked interaction.

7 Discussion

Given our results, we can safely affirm that word lists are really effective when
used in a short-word typing context. Such techniques are more efficient than the
existing method built-in DUCK.

As we found in the experiment, the lists are really effective in a short word
typing context. They turned to be faster than the slide-typing method, as well
as being more resilient to errors. The lists work in near constant time. When it
comes to accuracy, lists retrieve the words with less errors. This can be explained
by the fact that both of the lists offers the possible word without any mistake
in its spelling. As such, the only possible error in the validation is selecting a
completely different word; while such errors are possible at each letter if the user
is entering a word letter by letter (by using the slide-typing technique).

Besides, as the users knowledge of the list increases with its use, he spends
less time browsing the list seeking the item he wants, and could validate his
answer directly.

However, lists are very static. Indeed, the users can’t choose other words than
the words that have been elected to be in the list.

Therefore, our technique is very effective on the most commonly used short
words, but is useless for other short words. However, with a maximum of 7 words
starting with the same letter, our system allows the use of 124 most used words
short, representing 74% of the short words used in the French language.

Finally, word lists are static, we believe that the performance obtained in this
study without learning can be improved gradually as the user will type words



using these lists. Indeed, the more he will use them, the more he will know the
position of the words in the list and will lose less and less time to browse through
the list to find the desired word. On the other hand, he will also know if the
word is in the list of suggested words, and therefore may or may not use this
interaction to quickly enter a short word.

8 Conclusion

The list-based solution we offer is faster and more accurate than a technique
based on tactile exploration, or the technique offered in DUCK. Even if this
solution is limited to a restricted number of short words, it will improve the
overall typing speed as these words are the most frequently used ones.
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