
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/2820619.2820638
.

.

RESEARCH-ARTICLE

DUCK: a deDUCtive so keyboard for visually impaired users

PHILIPPE ROUSSILLE, University of Toulouse, Toulouse, Occitanie, France
.

MATHIEU RAYNAL, University of Toulouse, Toulouse, Occitanie, France
.

CHRISTOPHE JOUFFRAIS, University of Toulouse, Toulouse, Occitanie, France
.

.

.

Open Access Support provided by:
.

University of Toulouse
.

PDF Download
2820619.2820638.pdf
19 January 2026
Total Citations: 2
Total Downloads: 105
.

.

Published: 27 October 2015
.

.

Citation in BibTeX format
.

.

IHM'15: 27e conference francophone sur
l'Interaction Homme-Machine
October 27 - 30, 2015
Toulouse, France
.

.

IHM '15: Proceedings of the 27th Conference on l'Interaction Homme-Machine (October 2015)
hps://doi.org/10.1145/2820619.2820638

ISBN: 9781450338448

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/2820619.2820638
https://dl.acm.org/doi/10.1145/2820619.2820638
https://dl.acm.org/doi/10.1145/contrib-99658765470
https://dl.acm.org/doi/10.1145/institution-60027245
https://dl.acm.org/doi/10.1145/contrib-81100642291
https://dl.acm.org/doi/10.1145/institution-60027245
https://dl.acm.org/doi/10.1145/contrib-81377594403
https://dl.acm.org/doi/10.1145/institution-60027245
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027245
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F2820619.2820638&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ihm
https://dl.acm.org/conference/ihm
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2820619.2820638&domain=pdf&date_stamp=2015-10-27

Clavier DUCK : Utilisation d’un système de déduction de
mots pour faciliter la saisie de texte sur écran tactile

pour les non-voyants.
Philippe Roussille

Université de Toulouse &
CNRS ; IRIT ;

F31 062 Toulouse, France
philippe.roussille@irit.fr

Mathieu Raynal
Université de Toulouse &

CNRS ; IRIT ;
F31 062 Toulouse, France

mathieu.raynal@irit.fr

Christophe Jouffrais
CNRS & Université de

Toulouse ; IRIT ;
F31 062 Toulouse, France
christophe.jouffrais@irit.fr

RÉSUMÉ
L’utilisation des écrans tactiles et en particulier les cla-
viers logiciels est extrêmement compliquée pour les non-
voyants qui manquent de repères physiques sur ce type
d’appareil. Nous proposons dans cet article une solution
clavier logicielle qui propose une liste de mots pouvant
correspondre au mot recherché à partir de frappes approxi-
matives des utilisateurs non-voyants. Cette technique évite
ainsi à l’utilisateur d’explorer le clavier en permanence
pour trouver précisément les caractères à saisir. Une pre-
mière évaluation nous permet de montrer que notre sys-
tème est efficace pour les mots de plus de quatre carac-
tères. Il permet aussi d’éviter certains types d’erreur de
frappe.

Mots Clés
Saisie de texte ; déficience visuelle ; écran tactile ;
dispositifs mobiles ; clavier logiciel ; système déductif.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g.
HCI): User Interfaces — Input devices and strategies.

INTRODUCTION
Bien que les premières utilisations des mobiles étaient
limitées à l’appel et l’envoi de petits messages textuels
(SMS), les appareils mobiles ont évolué, et encouragent
maintenant l’utilisation de différents services, comme les
applications web et les réseaux sociaux. L’émergence des
tablettes a également permis, au détriment des ordinateurs
de bureau, l’utilisation de ces dispositifs mobiles pour la
plupart des tâches bureautiques habituelles (email, prise
de notes, support de présentation, etc.). D’autre part, les
claviers physiques ont presque disparu de ce type d’appa-
reil pour laisser la place à un espace d’affichage de plus
en plus grand. Les dispositifs mobiles intègrent mainte-
nant de grands écrans tactiles où l’interaction multitouch
est utilisée comme principale technique d’interaction en
entrée. Évidemment, l’absence de clavier physique a pro-
fondément modifié les paradigmes de saisie de texte en

fournissant des claviers logiciels qui s’affichent sur ces
surfaces tactiles. Ceci a plusieurs avantages, dont notam-
ment une disposition des touches plus facilement modi-
fiable ; et une meilleure réactivité aux actions de l’utili-
sateur (système de prédiction, de déduction, complétion,
etc.)

Cependant, ce type de dispositifs mobiles (i.e. avec écran
tactile et sans clavier physique) cause des problèmes d’ac-
cessibilité. Sur un ordinateur de bureau classique, les uti-
lisateurs en situation de déficience visuelle ont pour habi-
tude d’utiliser presque exclusivement le clavier physique
pour interagir avec leur environnement. Ils utilisent aussi
des raccourcis clavier pour accéder aux diverses com-
mandes d’une application. Sur les appareils mobiles avec
écrans tactiles, le manque de repères tangibles (tels que la
présence de touches physiques) rend la tâche très difficile,
voire impossible. En effet, sur ces dispositifs, les utilisa-
teurs accèdent aux différents éléments affichés à l’écran
en interagissant directement sur l’écran. Les déficients vi-
suels sont donc contraints d’explorer l’intégralité de l’en-
vironnement afin de trouver les éléments avec lesquels ils
veulent interagir.

Dans le cas de la saisie de texte réalisée au moyen de so-
lutions logicielles, ce problème est amplifié : ce processus
d’exploration est requis pour chaque caractère à saisir. En
effet, la méthode de saisie de texte la plus connue pour
les déficients visuels repose sur l’exploration de l’écran
avec le doigt. Au fur et à mesure du déplacement du doigt
à l’écran, le système produit grâce à une synthèse vo-
cale une vocalisation simultanée de la touche située sous
le doigt (les exemples les plus courants sont VoiceOver
d’Apple, ou TalkBack de Google). De ce fait, les utili-
sateurs malvoyants doivent constamment explorer l’écran
pour localiser la touche souhaitée. Bien que le retour vo-
cal soit améliorable avec des indices vibratoires, ce pro-
cessus, appelé « exploration douloureuse » [3], est lent et
nécessite beaucoup d’efforts de concentration de la part de
l’utilisateur.

Pour pallier ce problème d’exploration, nous avons conçu
et évalué un clavier logiciel « déductif » appelé DUCK
(deDUCtive Keyboard) visant à diminuer cette explora-
tion douloureuse. DUCK est basé sur le fait que la grande
majorité des utilisateurs malvoyants connaissent la dispo-
sition spatiale des caractères de leur clavier physique, du
fait de leur utilisation quotidienne. Avec DUCK, l’utili-
sateur doit explorer la disposition du clavier logiciel une
seule fois par mot, au début, pour choisir la première

1

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided thatcopies are not made or
distributed for profit or commercial advantageand that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise,or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
IHM'15, October 27-30, 2015, Toulouse, France
© 2015 ACM. ISBN 978-1-4503-3844-8/15/10…$15.00
DOI: http://dx.doi.org/10.1145/2820619.2820638

lettre. Puis, il suffit de taper, pour chaque autre caractère
du mot souhaité, à l’endroit où l’utilisateur estime que le
caractère se trouve sur le clavier. À la fin de chaque mot,
un système de déduction propose une liste de mots pro-
bables selon les frappes que vient d’effectuer l’utilisateur.
Ainsi, ce clavier évite à l’utilisateur plusieurs phases d’ex-
ploration par mot en favorisant les frappes directes sur le
clavier.

Dans cet article, nous faisons un survol des principales
méthodes d’entrée existantes sur appareils mobiles, et no-
tamment celles qui sont spécifiques aux utilisateurs ayant
une déficience visuelle. Ensuite, nous décrivons les prin-
cipes de DUCK ainsi que l’algorithme qui permet au
clavier d’effectuer la déduction des mots. Nous présen-
tons également une comparaison expérimentale de DUCK
face à la méthode de saisie traditionnellement utilisée par
les non-voyants. Enfin, nous discutons les résultats et les
améliorations que nous imaginons pouvoir apporter, afin
d’améliorer l’efficacité de DUCK et la satisfaction des uti-
lisateurs.

ETAT DE L’ART

Saisie de texte sur dispositif mobile
Les claviers logiciels constituent les systèmes de saisie de
texte les plus communs sur les appareils mobiles récents.
Ils reproduisent généralement la disposition de caractères
des claviers physiques la plus utilisée parmi celles de la
langue de l’utilisateur (i.e. QWERTY ou AZERTY selon
la langue). L’utilisateur doit appuyer sur l’écran à l’endroit
où se situe la touche, et ce dans le but de sélectionner le ca-
ractère associé à cette touche. Toutefois, ces dispositions
furent initialement conçues pour les machines à écrire afin
de répondre à une entrée de texte à dix doigts, tout en iso-
lant les caractères les plus fréquents. Par conséquent, ces
dispositions ne sont pas adaptées pour une interaction avec
un ou deux doigts comme c’est généralement le cas sur les
appareils mobiles.

De plus, la présence d’un écran multitouch permet
d’autres types d’interaction avec le clavier logiciel. Par
exemple, Zhai et al. ont montré qu’il peut être plus ra-
pide pour saisir un mot de tracer un chemin reliant tous
les caractères de ce mot [19]. Pour les mots les plus fré-
quemment utilisés, le chemin peut même être remplacé
par un geste qui est reconnu partout sur l’écran [6].

D’autre part, certaines dispositions de claviers ont été op-
timisées pour une frappe à un seul doigt. Ces dispositions
ont été soit conçues à la main [8] ou ont impliqué des heu-
ristiques d’optimisation [5], [15]. Ces heuristiques sont
basés sur la fréquence des bigrammes dans une langue et
ont pour but de rapprocher les caractères composant les
bigrammes les plus fréquemment utilisés. Avec ce type de
disposition, l’utilisateur a alors moins de mouvements à
effectuer pour saisir du texte [18].

Dans les travaux mentionnés précédemment, les claviers
virtuels contiennent autant de touches que de caractères.
La taille des écrans de dispositifs mobiles étant encore as-
sez petite, afficher un clavier complet sur ce type d’écran
revient à avoir des touches réduites, ce qui oblige alors
l’utilisateur à se concentrer sur la précision de ses frappes

lors de la saisie de texte. Ainsi, afin de répondre au
problème de la taille des touches, il est par exemple
possible d’étendre une touche ou une partie du clavier.
Cette modification dynamique peut s’appliquer sur une
zone de l’écran en fonction du pointage de l’utilisa-
teur [12], [13], [14] ou peut être faite après la saisie d’un
caractère par l’utilisateur. Dans ce cas, la disposition des
touches ou la taille de celles-ci sont modifiées sur la base
de ce qui a été précédemment saisi [1], [10].

Une autre solution consiste à réduire le nombre de touches
affichées sur l’écran et ainsi augmenter la taille de chaque
touche. Plusieurs caractères sont alors regroupés sur une
même touche. Pour chaque touche, l’utilisateur peut sé-
lectionner un caractère avec une interaction spécifique. Le
plus connu de ces claviers dits « ambigus » est celui uti-
lisant la technique multifrappe. Cette technique consiste
à taper une, deux ou trois fois de suite sur la même
touche pour sélectionner le premier, le deuxième ou le
troisième caractère affecté à cette touche [17]. Les cla-
viers dits à « accords » sont une autre solution pour ré-
duire le nombre de touches sur l’écran. Un caractère est
entré lorsque toutes les touches requises sont pressées si-
multanément [4] ou successivement [7].

L’ensemble de ces différentes techniques permet d’accé-
lérer la saisie de texte. Cependant, elles s’appuient sur
une sélection visuelle des touches qui sont affichées sur
l’écran. En l’absence d’indices physiques sur l’écran, il est
nécessaire d’effectuer des adaptations afin qu’elles soient
utilisables par des personnes en situation de déficience vi-
suelle.

Solutions spécifiques pour déficients visuels
Le plus grand défi pour un utilisateur malvoyant lors de
saisie de texte sur un appareil mobile est la localisation
des différents caractères du clavier logiciel. La solution
la plus courante consiste à vocaliser la touche située sous
le doigt de l’utilisateur grâce à une synthèse vocale (voir
par exemple VoiceOver d’Apple ou Google TalkBack).
Les caractères sont entrés lorsque l’utilisateur soulève son
doigt de l’écran. La nécessité pour l’utilisateur de parcou-
rir l’ensemble du clavier avec son doigt afin de trouver
le caractère attendu en constitue l’inconvénient majeur :
même avec une bonne connaissance de la disposition spa-
tiale des caractères, l’utilisateur doit vérifier la position
du caractère pour chaque nouvelle saisie. Bien qu’elle soit
fonctionnelle, cette solution est extrêmement consomma-
trice de temps. Vertanen et al. [16] ont proposé un système
permettant de taper sur un clavier logiciel sans le regar-
der. Ce système de saisie par phrase permet de saisir du
texte assez rapidement (29, 4wpm), mais a l’inconvénient
d’avoir un taux d’erreur très élevé (18, 5 %).

Différents claviers virtuels ont été spécifiquement conçus
pour les utilisateurs malvoyants. Ces claviers sont souvent
basés sur l’alphabet Braille où les lettres sont codées dans
une matrice à points composée de trois lignes et deux co-
lonnes, chaque caractère correspondant à un code codé
par un arrangement particulier de ces six points. Braille-
Type [11], par exemple, repose sur la division de l’écran
en six cellules de même taille (trois lignes et deux co-
lonnes), chacune correspondant à un point Braille. L’uti-

2

lisateur doit appuyer sur les cellules souhaitées pour ac-
tiver les points nécessaires à la composition d’un carac-
tère. Le système valide l’entrée après un certain délai.
Le système TypeInBraille [9] est également basé sur le
Braille. Dans ce cas, la sélection de caractères ne se base
pas sur la division de l’écran, mais sur une interaction
multifrappe. L’utilisateur doit effectuer trois multifrappes
successives sur l’écran pour sélectionner un caractère. Les
trois multifrappes correspondent aux trois lignes de la ma-
trice Braille. Pour chaque ligne, l’utilisateur doit effec-
tuer l’un des quatre gestes possibles : activer le point de
gauche, activer le point de droite, activer les deux points
ou ne pas activer de point pour la ligne.

Bien qu’une saisie de texte non-visuelle basée sur le
Braille soit fonctionnelle, il est important de noter que
« moins de 10% des 1,3 millions de personnes considé-
rées comme légalement aveugles aux États-Unis sont des
lecteurs Braille1 ». Par conséquent, ces systèmes sont li-
mités à une minorité des utilisateurs malvoyants. De plus,
le temps nécessaire pour apprendre le Braille ou une nou-
velle disposition du clavier pour être efficace avec ce nou-
veau système de saisie est extrêmement long [8]. La plu-
part des utilisateurs ne feront pas cet effort pour utiliser un
dispositif spécifique.

A partir de ce constat, nous avons cherché à concevoir un
clavier qui améliore la vitesse de saisie de texte pour les
utilisateurs malvoyants, mais qui ne nécessite pas d’ap-
prentissage particulier pour en avoir une utilisation op-
timale. Par conséquent, nous nous sommes appuyés sur
l’agencement classique du clavier, connu par tous les uti-
lisateurs malvoyants utilisant un clavier physique. Le défi
était d’accélérer la vitesse de saisie de texte sans produire
plus d’erreurs.

CONCEPTION DE DUCK

Principes de conception
Nous avons conçu le clavier DUCK sur la base de diffé-
rentes observations : d’une part, l’utilisateur dispose d’une
bonne connaissance de l’agencement des caractères de son
clavier physique ; et d’autre part, il est plus efficace de
fournir un retour vocal à l’utilisateur une fois que la saisie
du mot est terminée plutôt que de l’informer après chaque
caractère saisi.

DUCK est un clavier logiciel affiché sur l’ensemble de la
surface de l’écran. Afin de ne pas perdre la connaissance
préalable de l’agencement du clavier, la disposition des
caractères alphabétiques est identique à celle du clavier
physique de l’utilisateur.

Lorsqu’il souhaite saisir un mot, l’utilisateur fait d’abord
glisser un doigt sur le clavier pour chercher la première
lettre. Au cours de cette exploration, l’utilisateur a un re-
tour vocal correspondant au caractère survolé. Pour vali-
der la première lettre, il doit soulever son doigt de l’écran
au moment où il se trouve sur le caractère souhaité. Pour
terminer la saisie du mot dans sa totalité, l’utilisateur doit
ensuite taper sur l’écran tactile autant de fois que ce mot
comporte de lettres restantes. La seule instruction est de
1https://nfb.org/Images/nfb/documents/word/The_
Braille_Literacy_Crisis_In_America.doc

taper à l’endroit où il estime que le caractère souhaité se
situe, et l’utilisateur n’a pas à se soucier de la précision
de sa frappe. Ces lettres restantes n’ont pas de retour vo-
cal pour ne pas perturber l’utilisateur lors de la saisie,
à la place un simple retour audio (bip) est fourni pour
chaque frappe. Une fois que l’utilisateur a fini de taper
l’ensemble des lettres constituant son mot, il doit valider
sa saisie en appuyant deux doigts sur l’écran tactile. Pour
déterminer le mot que l’utilisateur a choisi, DUCK calcule
les écarts entre les frappes théoriques nécessaires pour en-
trer chaque mot ayant la même initiale et le même nombre
de lettres ; et renvoie les mots minimisants ces écarts. Les
quatre mots les plus probables sont fournis dans une liste.
Le premier mot est lu et épelé. L’utilisateur peut sélec-
tionner le mot en cours par un tap à deux doigts, ou faire
défiler la liste avec un geste à un doigt. En cas d’erreur,
l’utilisateur peut annuler la saisie du mot en effectuant un
geste avec deux doigts vers la gauche.

Avec cette technique nous estimons pouvoir réduire consi-
dérablement le temps d’exploration. En effet, l’utilisateur
explore le clavier une seule fois par mot, lors de la sai-
sie du premier caractère, puis effectue simplement des
frappes pour les autres caractères du mot sans se soucier
de la précision de ses frappes.

Algorithme déductif
Pour décrire l’algorithme, nous choisissons un cas où
l’utilisateur veut taper un mot de N caractères commen-
çant par la lettre L. Soit E le sous-ensemble de mots dis-
ponibles dans le dictionnaire, commençant par L et conte-
nant N lettres. Notons h = [hi] la séquence de N − 1
frappes de l’utilisateur, où hi = (xi, yi) sont les coordon-
nées de la i-ème frappe. Comme chaque mot m de E peut
être décrit comme une séquence de caractères ci, la touche
correspondante au caractère et sa position sur l’écran sont
connues. Soit position(ci) = (x′i, y

′
i) les coordonnées du

centre de la touche correspondant au caractère marqué ci.
Pour calculer le meilleur mot possible pour la séquence
h, l’algorithme calcule la distance entre la séquence de
frappes h et chaque candidat de E :

D(h,m) =
N−1∑
i=1

√
(xi − x′i)

2 + (yi − y′i)
2

Enfin, DUCK renvoie les mots par ordre de probabilité,
qui sont les mots ayant la même première lettre et qui mi-
nimisent la distance entre la séquence de hits h et le mot
m. Le fichier du dictionnaire peut être modifié. Il s’agit
d’un fichier décrivant les mots possibles, et la position des
touches sur la disposition du clavier. Nous fournissons un
outil pour créer des dictionnaires à partir d’une liste de
mots et d’un agencement de caractères spécifique.

Interactions gestuelles
Lorsque l’utilisateur est dans la phase de validation du
mot, une liste de mot lui est proposée. Pour faire défiler les
mots de cette liste, il peut alors employer n’importe quel
geste à un doigt. Nous avons fait ce choix pour éviter les
erreurs de reconnaissance de gestes. La distinction entre
défilement et validation se fait sur le nombre de doigts

3

https://nfb.org/Images/nfb/documents/word/The_Braille_Literacy_Crisis_In_America.doc
https://nfb.org/Images/nfb/documents/word/The_Braille_Literacy_Crisis_In_America.doc

utilisés. La validation du mot se fait au moyen de deux
doigts.

En plus de saisir des mots, l’utilisateur peut aussi faire
glisser un doigt vers le haut ou vers le bas pour sélection-
ner l’affichage des symboles ou des signes de ponctuation.
Comme il n’y a pas de prédiction ou de déduction pour
les symboles et les signes de ponctuation, l’interaction de
DUCK bascule alors dans le mode de « recherche et va-
lidation » : l’utilisateur doit déplacer le doigt sur l’écran
jusqu’à ce que le caractère soit trouvé. Relâcher le doigt
valide l’entrée du caractère.

MATÉRIEL ET MÉTHODES

Dispositif
Nous avons réalisé une étude comparative entre DUCK
et un clavier vocalisé nommé VODKA. VODKA reprend
le principe du clavier logiciel le plus couramment utilisé
sur dispositif mobile (VoiceOver d’Apple, ou TalkBack
de Google) : chaque caractère est oralisé lorsque l’utilisa-
teur passe son doigt dessus. La dernière touche choisie est
validée lorsque l’utilisateur lève son doigt. Les deux cla-
viers sont basés sur un agencement identique : cet agence-
ment est un sous-ensemble d’AZERTY comprenant uni-
quement les caractères alphabétiques, disposés sur trois
rangées de dix touches. Les quatre dernières touches de la
troisième rangée ont été laissées vierges (là où les signes
de ponctuation sont généralement situés). Les utilisateurs
peuvent effacer la dernière lettre tapée en effectuant un
geste avec deux doigts vers la gauche. Avec les deux cla-
viers, il est possible d’entrer un espace en faisant glisser
deux doigts vers la droite. Les espaces sont toutefois au-
tomatiquement ajoutés avec DUCK dès que le mot est va-
lidé.

Le corpus de mots utilisé dans cette expérience contient
336 531 mots extraits du dictionnaire Gutenberg français2.
Ces mots sont utilisés par l’algorithme de déduction pour
générer la liste de mots possibles. Nous avons choisi de ne
proposer que les 4 mots les plus probables. Ce choix s’est
fait suite à une pré-étude avec un utilisateur non-voyant
à qui nous avons fait utiliser le système avec différentes
tailles de liste de mots. Les listes supérieures à 4 mots
n’apportaient pas de réel gain sur le taux d’apparition des
mots dans la liste et l’utilisateur passait plus de temps à
rechercher dans la liste. C’est pourquoi nous avons choisi
de ne proposer que 4 mots dans la liste de déduction.

L’expérience a été menée sur un Samsung Galaxy S III,
en utilisant une version stock d’Android 4.1, un quadruple
cœur de 1,4 GHz Cortex-A9 pour CPU et 1 Go de RAM.
L’écran tactile a une taille de 59,8 × 106,2 mm avec une
résolution de 720 × 1280 pixels. Les deux claviers sont
codés en Java pour une utilisation directe sur le smart-
phone. La synthèse vocale est proposée par le moteur
IVONA, que nous avons sélectionné pour sa clarté et sa
prosodie proche d’une voix naturelle.

Participants

2http://www.pallier.org/ressources/dicofr/
dicofr.html

Nous avons recruté douze participants, six hommes et
six femmes (âge moyen : 32,4 ans, écart-type : 16,2 an-
nées). Dix d’entre eux étaient considérés comme aveugles
sans aucune perception. Deux utilisateurs avaient une per-
ception lumineuse. Aucun d’entre eux n’avait de capa-
cités visuelles suffisantes pour percevoir la forme géné-
rale du clavier virtuel. Tous les participants ont déclaré
avoir une bonne connaissance de la disposition de carac-
tères AZERTY : huit utilisateurs en avaient une utilisa-
tion quotidienne personnelle ; tandis que quatre donnaient
des cours de dactylographie, bénéficiant de ce fait d’une
connaissance dite experte.

L’expérience a été menée en conformité avec les principes
de la déclaration d’Helsinki, et de l’acte français de pro-
tection des données. Chaque utilisateur a signé un formu-
laire de consentement écrit.

Procédure
La tâche mesurée consistait à taper une phrase courte
après dictée par la synthèse vocale, en utilisant soit
DUCK, soit VODKA. Les sujets devaient taper cette
phrase aussi vite que possible tout en minimisant le
nombre d’erreurs. La moitié des utilisateurs a commencé
avec une session utilisant DUCK, tandis que les autres
ont commencé avec VODKA. Au sein de chaque ses-
sion, l’utilisateur devait saisir huit phrases courtes sous la
dictée. Chaque participant avait seize phrases identiques,
mais attribuées dans un ordre pseudo-aléatoire différent.
Les seize phrases étaient simples afin de faciliter leur mé-
morisation, mais également pour minimiser le nombre de
fautes de frappe. Les phrases comprenaient quatre à sept
mots parmi les mots les plus fréquents de la langue fran-
çaise3 ; tout en s’assurant que les lettres de ces phrases
correspondaient à la répartition de la fréquence des lettres
de la langue française. Chaque séance débutait par une
brève phase de familiarisation pour le clavier étudié. Les
sujets devaient apprendre à saisir des lettres, des mots
courts, des mots longs et enfin des phrases. A tout mo-
ment, l’utilisateur pouvait réécouter la phrase à saisir en
faisant glisser deux doigts vers le haut. Il pouvait écouter
sa saisie réelle en faisant glisser deux doigts vers le bas,
et effacer sa dernière entrée (mot pour DUCK, lettre pour
VODKA) en faisant glisser deux doigts vers la gauche. À
la fin de chaque session, l’utilisateur devait compléter un
questionnaire SUS sur le clavier. En outre, une fois l’ex-
périence terminée, ce dernier devait mentionner sa préfé-
rence générale et ses opinions sur les deux claviers.

Toutes les interactions, y compris les événements utili-
sateur (mouvements des doigts, appuis, relâchements), la
saisie de texte (caractères et mots tapés) et les listes de dé-
ductions ont été enregistrées dans un fichier XML. Tous
les questionnaires ont été passés oralement.

RÉSULTATS
Pour chaque sujet, l’expérience entière a duré entre 50 à
165 minutes, comprenant une pause de 15 minutes entre
les deux sessions. Nous avons enregistré les saisies tex-
tuelles de douze utilisateurs différents tapant seize phrases
3http://netia59a.ac-lille.fr/va.anzin/IMG/pdf/
mots_les_plus_frequents.pdf

4

http://www.pallier.org/ressources/dicofr/dicofr.html
http://www.pallier.org/ressources/dicofr/dicofr.html
http://netia59a.ac-lille.fr/va.anzin/IMG/pdf/mots_les_plus_frequents.pdf
http://netia59a.ac-lille.fr/va.anzin/IMG/pdf/mots_les_plus_frequents.pdf

de quatre à sept mots (pour un total de 192 phrases et 1032
mots). Dans les sections suivantes, le niveau de significa-
tion (α) a été fixé à 0,05.

Les sections suivantes présentent les résultats quantitatifs
et qualitatifs, ainsi que des statistiques déductives. Les
corrections de Bonferroni ont été systématiquement ap-
pliqués pour les comparaisons multiples.

Vitesse de frappe pour les mots et les phrases
Afin de comparer l’efficacité des utilisateurs lors de l’uti-
lisation des deux claviers, nous avons d’abord sélectionné
les phrases et les mots qui ont été tapés correctement.
L’analyse sur les erreurs de frappe est détaillée dans la
section suivante. La vitesse d’entrée a été calculée de deux
façons. Tout d’abord, nous avons calculé la vitesse de sai-
sie de texte par phrase. Ici, la longueur de chaque phrase (y
compris les espaces entre les mots et à la fin d’une phrase)
a été divisé par le temps (en secondes) nécessaire pour
entrer dans cette phrase. Cette vitesse est donnée en ca-
ractères par seconde (CPS).

Les vitesses moyennes d’entrée des phrases étaient
0, 37 cps (σ = 0, 12) pour VODKA et 0, 38 cps (σ =
0, 15) pour DUCK, la médiane étant de 0, 33 cps pour les
deux. Comme les distributions de vitesse ne sont pas nor-
males (Shapiro-Wilk,W = 0, 95, p < 0, 01), nous avons
utilisé un test de Wilcoxon pour les comparer. Ce test a
montré que les vitesses ne sont pas statistiquement diffé-
rentes (W = 2, 115, p = 0, 819) entre les deux claviers.

Nous avons également comparé la vitesse de saisie d’un
mot entre les deux claviers. La vitesse de saisie d’un mot
correspond à la durée entre le moment l’entrée du premier
caractère d’un mot et celui de la sélection finale de l’en-
semble du mot (en appuyant sur la barre d’espace pour
VODKA ou en appuyant deux doigts sur l’écran pour
DUCK), divisée par la longueur de ce mot. Il est impor-
tant de noter ici que le temps de saisie pour DUCK com-
prend la phase de validation, qui consiste à écouter les
différents mots de la liste et à sélectionner celui attendu.
Les vitesses moyennes d’entrée de mots étaient 0, 383 cps
(médiane = 0, 28, σ = 0, 20) pour VODKA et 0, 398 cps
(médiane = 0, 32, σ = 0, 18) pour DUCK. Un test de
Wilcoxon a montré que ces vitesses sont significativement
différentes (W = 774, p = 0, 048).

Figure 1. Vitesse de frappe moyenne (en cps) en fonction de la
longueur de mot - la vitesse de frappe pour VODKA diminue au fil

du temps tandis qu’elle augmente pour DUCK.

La figure1 décrit la vitesse de saisie moyenne d’un mot en
fonction de la longueur de ce mot. Il semble que VODKA

est très efficace pour saisir un mot de deux lettres. Par
contre, le temps nécessaire pour saisir un caractère aug-
mente avec la longueur des mots. La vitesse pour saisir
un mot de 12 lettres est seulement de 0, 4 cps. Cependant,
DUCK est de plus en plus rapide. Les deux droites de ré-
gression s’interceptent autour de quatre caractères. Nous
avons comparé les vitesses pour chaque longueur de mot
en utilisant une série de tests de Wilcoxon avec une cor-
rection de Bonferroni. Il semble que DUCK soit systé-
matiquement plus efficace que VODKA pour les mots de
plus de six caractères. Plus précisément, le graphe de la fi-
gure 1 montre que la vitesse pour taper des mots de douze
lettres avec DUCK est proche de 0, 8 cps, soit deux fois la
vitesse de VODKA.

Saisie de mots sans validation
Comme mentionné précédemment, le temps nécessaire
pour taper un mot avec DUCK comprend deux phases.
La première phase, que nous avons appelée « frappe »,
comprend le temps nécessaire pour trouver et sélection-
ner la première lettre d’un mot de N caractères, et le
temps nécessaire pour faire les N − 1 frappes suivantes.
La deuxième phase, que nous avons appelé « validation »,
comprend le temps nécessaire pour choisir le mot correct
dans la liste. La position du mot désiré dans la liste dé-
pend de la distance entre les frappes de l’utilisateur et
la distance avec le mot désiré. De ce fait, dans les sec-
tions suivantes, nous avons évalué le temps de saisie avec
VODKA (TV) ; et le temps de saisie avec DUCK, séparé
en deux temps, le temps de frappe (TTAP) et le temps de
validation (TVAL).

Figure 2. Temps moyens (en s) en fonction des longueurs de mots.
Les temps de frappe (TTAP) et de validation (TV AL) sont

également indiqués (TD = TTAP + TV AL).

La figure 2 indique le temps nécessaire pour saisir un mot
avec VODKA (TV) et DUCK (TD). Elle montre aussi le
temps nécessaire pour la frappe (TTAP) et la validation
(TV AL) pour DUCK. Ces différentes durées ont été calcu-
lées en fonction de la longueur de mot (2 à 12 caractères).
La régression linéaire des moindres carrés montre que le
temps de saisie avec VODKA (ligne bleue) augmente avec
un coefficient de 2,7 (R2 = 0, 95). Le temps de saisie de
DUCK (ligne rouge) est un peu moins affecté par la lon-
gueur des mots (y = 1, 2,R2 = 0, 95). Le temps de frappe
(ligne pointillée) est inférieur, mais fortement corrélé à
l’ensemble du temps de saisie avec un coefficient très si-
milaire (y = 1, 1, R2 = 0, 94). Comme prévu, le temps
de validation (ligne noire) ne dépend pas de la longueur de
mot (y = 0, 03, R2 = 0, 03). Il est presque équivalent à

5

l’ordonnée à l’origine (a = 3, 5) et constant, indépendam-
ment de la longueur des mots, ce qui montre que le temps
de saisie avec DUCK ne dépend que du temps de frappe.

Il est intéressant de noter que les droites de régression
pour les temps de saisie de DUCK et VODKA se croisent
à 3,7 lettres, ce qui signifie que les mots de plus de
quatre lettres sont plus rapides à saisir avec DUCK. Il
semble qu’il y ait une différence significative (les tests
de Wilcoxon avec une correction de Bonferroni donnent
W = 1402, p = 0, 02 < α) entre le temps de frappe
de DUCK et le temps de saisie de VODKA. De même, la
différence de temps nécessaire pour taper de longs mots
avec les deux claviers augmente. Par exemple, il est deux
fois et demie plus long de taper des mots de dix lettres
avec VODKA qu’avec DUCK (13, 1 s contre 33, 7 s,
p = 0, 009). En utilisant seulement deux catégories de
mots qui sont soit plus courts ou plus longs que quatre
lettres, il y a une différence de temps très significative
(Wilcoxon, p = 0, 0002). Évidemment, le temps total de
saisie (comprenant la phase de validation obligatoire) avec
DUCK minimise cette observation. Cependant, diviser les
données à partir des mots de six lettres donne un résul-
tat significatif (p < 0, 001), montrant que l’étape de vali-
dation nécessaire avec DUCK est entièrement compensée
pour les mots de plus de cinq caractères.

Phase de validation
Comme mentionné précédemment, la phase de validation
est égale à 3, 5 s, et n’a pas été affectée par la longueur de
mot. Toutefois, cela dépend de la position du mot attendu
dans la liste (test de Wilcoxon, W = 954, p = 0, 024). Il
faut en moyenne 3, 0 s pour sélectionner un mot en pre-
mière position, et ce temps augmente lorsque le mot est
situé plus loin dans la liste (respectivement 6, 6 s, 8, 2 s et
9, 6 s pour la deuxième, troisième et quatrième positions).

Pendant toute l’expérience, pour tous les sujets, le mot at-
tendu était en première position dans 83 % des cas. Les
mots en deuxième, troisième et quatrième sont respecti-
vement choisis dans 8 %, 5 % et 3 % des cas. Indépen-
damment de la longueur du mot, le mot sélectionné est
habituellement dans les deux premières positions.

Ceci peut s’expliquer en partie par la bonne connaissance
que les utilisateurs ont de leur clavier. En effet, pour les
mots sélectionnés et se trouvant en première position de
la liste, les frappes de l’utilisateur sur l’écran sont en
moyenne à 95 px du centre de la touche associée au carac-
tère souhaité (159 px pour les mots en deuxième position,
165 px pour les mots en troisième position et 152 px pour
les mots en dernière position). Chaque touche mesurant
113 px de long et 214 px de haut, cela veut dire que les
frappes de l’utilisateur sont soit sur la bonne touche, soit
dans un périmètre très proche de la touche voulue.

Niveau de correction de la saisie de texte
Nous avons considéré qu’une phrase est correcte lorsque
l’utilisateur n’a pas fait la moindre erreur dans la phrase.
Les utilisateurs n’avaient pas de contraintes en termes
de position du téléphone ou d’utilisation de doigts spé-
cifiques. Ils pouvaient ou non corriger leurs erreurs avant
de valider leur entrée. En regardant les données dans leur

globalité, en tenant compte des douze utilisateurs (soit 192
phrases), 156 additions et 62 omissions de lettres avaient
été commises avec VODKA ; contre 218 additions et 118
omissions pour DUCK. Cependant, nous avons constaté
que parmi les 192 phrases saisies par les utilisateurs, 69
avaient été correctement tapées avec DUCK, tandis que ce
nombre chutait à 31 pour VODKA. Nous avons regardé en
détail ces phrases tapées correctement.

La métrique habituelle, la distance minimale interchaîne
(Minimum String Distance ou MSD), est définie par le
nombre minimum de modifications uniques de caractères
(comprenant les ajouts, les omissions et les substitutions)
pour transformer une chaîne en une autre. En utilisant
DUCK et VODKA, il y a peu de différences au niveau
MSD (96 % pour VODKA et 94 % pour DUCK). Les
deux claviers offrent une tolérance similaire pour des er-
reurs au niveau de la lettre. Comme la MSD classique ne
serait pas applicable sur ces résultats, nous avons conçu
une MSD légèrement modifiée. Pour chaque phrase, nous
avons compté le nombre total de mots qui ont été saisis,
et les mots qui ont été tapés correctement. Nous avons
ensuite défini la distance minimale intermots (Minimum
Word Distance ou MWD) qui représente la distance entre
deux phrases en mots :

MWD =
Wcorrect

Wtotal

Figure 3. MSD et MWD pour les deux claviers. Bien que les deux
claviers offrent une MSD similaire, DUCK est plus efficace que

VODKA pour la saisie de mots (MWD).

La comparaison des MWD (Wilcoxon ; W = 486, p <
0, 001) a montré que DUCK est nettement supérieur à
VODKA (MWD = 41 % pour VODKA contre 92 %
pour DUCK) en termes de correction des mots (voir fi-
gure 3). Ce résultat montre que DUCK permet une réduc-
tion impressionnante des erreurs de frappe au niveau des
mots.

Préférences des utilisateurs
Parmi les retours utilisateurs, sept utilisateurs préféraient
VODKA tandis que cinq préféraient DUCK. Les utilisa-
teurs ont expliqué leur préférence à VODKA en indiquant
que certains des mots utilisés dans l’expérience étaient
plus facile à taper avec ce type de clavier. Pour certains,
il est plus facile de s’appuyer sur la disposition du clavier
et de l’écran physique pour taper des mots (« Quand je
veux saisir le ’p’, par exemple, je dois seulement glisser

6

mon doigt sur le coin en haut à droite jusqu’à ce que je
le trouve. »). Pour d’autres, ce clavier est plus adapté à un
usage quotidien, notamment à l’utilisation de mots abré-
gés des SMS (« Je ne tape pas des mots comme ça quand
j’envoie des SMS, ils sont écrits en abrégé. »). La dernière
raison, et probablement la plus compréhensible, porte sur
le sentiment de confiance et de contrôle (« Je trouve ça
effrayant de ne pas savoir ce qui a été tapé, même si le
mot est correctement deviné. Tout ce que j’entends, ce sont
les bips lorsque je tape. »). Avec VODKA, chaque lettre
est vocalisée et il n’y a pas besoin d’une étape de vali-
dation finale. En outre, certains utilisateurs ont l’habitude
de ce type de clavier, car il est similaire à VoiceOver sur
iPhone (« Je suis habitué à une saisie de cette façon : glis-
ser et relâcher pour sélectionner une lettre. Il y a aussi un
mode où on appuie deux fois sur les lettres, mais c’est plus
lent. »). D’autre part, les utilisateurs préférant DUCK ont
vraiment apprécié la vitesse de frappe. Très vite, ils ont
remarqué qu’il était plus rapide que VODKA : si l’utilisa-
teur possède une connaissance suffisante de la disposition
du clavier à l’esprit, taper avec DUCK revient à taper sur
un clavier normal (« Je peux taper sur ce clavier aussi
vite que je le fais sur mon PC. »).

Enfin, nous avons examiné les questionnaires SUS [2]
pour les deux claviers. VODKA a obtenu un score de
58,1 ; tandis DUCK a reçu un bien meilleur score de 70,5.

DISCUSSION
A l’analyse des résultats, il apparaît que les claviers
DUCK et VODKA se valent sur la saisie de l’ensemble
des phrases. Cependant, si nous décomposons le temps
de saisie pour le clavier DUCK en temps de frappe puis
temps de validation, il apparaît que le temps nécessaire
pour frapper sur les différents caractères avec DUCK est
bien plus faible que le temps nécessaire pour saisir un
mot avec VODKA. En revanche, la saisie d’un mot avec
DUCK nécessite en plus un temps de validation difficile-
ment compressible (en moyenne 3, 5 s). Pour que la saisie
avec le clavier DUCK soit intéressante, il faut donc que
le gain lors de la phase de frappe soit plus conséquent
que ce temps de validation. Le gain lors de la phase de
frappe est proportionnel au nombre de caractères dans le
mot. Il compense le temps de validation à partir des mots
constitués d’au moins 4 caractères. Par conséquent, le cla-
vier DUCK n’est donc intéressant que pour les mots d’au
moins 4 caractères. Pour les mots de 1, 2 ou 3 caractères,
l’interaction proposée ne convient donc pas car l’utilisa-
teur perd trop de temps, lors de la phase de validation, à
choisir le mot qu’il souhaite dans la liste des mots propo-
sés. Ceci n’est pas dû à un problème de performance du
système de déduction car même pour les mots courts, le
mot souhaité par l’utilisateur est généralement positionné
à la première place dans la liste. Dans ce cas, l’utilisateur
n’a pas à chercher le mot dans la liste, il doit simplement
le valider.

Dans tous les cas, la position du mot dans la liste a son im-
portance. En effet, plus le mot se trouvera à une position
éloignée dans la liste et plus l’utilisateur mettra du temps
à valider le mot. Bien que l’algorithme de déduction de
mots utilisé se montre performant, certains problèmes de

déduction subsistent. Le premier d’entre eux est la proxi-
mité géographique de deux mots : en effet, si deux mots de
même longueur ont des caractères qui sont à la même po-
sition dans le mot et qu’ils sont situés à proximité l’un de
l’autre sur le clavier, alors le système de déduction aura du
mal à trancher entre les deux mots. Par exemple, les mots
« nuit » et « nuis » ne diffèrent que de leur quatrième
lettre. Ces deux lettres étant assez proches sur le clavier,
le système de déduction ne saura pas faire la différence
entre les deux mots si l’utilisateur venait à effectuer sa
quatrième frappe à équidistance entre la touche contenant
le caractère « s » et celle contenant le caractère « t ».

Enfin, la faible tolérance aux erreurs constitue le dernier
problème de notre système de déduction. En effet, l’algo-
rithme étant basé sur le nombre de frappe de l’utilisateur,
si ce dernier a ajouté ou oublié un caractère lors de ses
frappes, alors le système ne lui proposera pas le mot sou-
haité car le nombre de frappes effectuées par l’utilisateur
ne correspond pas au nombre de caractères du mot sou-
haité. Par conséquent, comme le système ne permet pas
la correction des frappes au cours de la saisie d’un mot,
l’utilisateur devra alors ressaisir complètement le mot. Ce
problème (ressaisir complètement le mot) est valable à
chaque fois que le mot souhaité ne se trouve pas dans la
liste des mots proposés. Ceci a alors une forte incidence
sur la vitesse de saisie de texte si ce phénomène se repro-
duit plusieurs fois.

TRAVAUX FUTURS
Cette première expérimentation a mis en évidence un cer-
tain nombre de faiblesses que nous nous attacherons à
combler dans nos futurs travaux.

Les mots courts
Il apparaît que les mots courts ne peuvent être saisis aussi
rapidement avec DUCK qu’avec VODKA du fait de la
phase de validation. Pour résoudre ce problème, nous en-
visageons de mettre en place une interaction à base de
gestes pour sélectionner les mots les plus courants de
moins de 4 caractères. Le challenge sera de proposer une
interaction qui permettra de distinguer la recherche d’un
caractère sur le clavier et la réalisation d’un geste effec-
tué pour saisir un mot court. Seuls les mots courts les plus
fréquemment utilisés seront représentés par un geste pour
éviter une trop forte charge d’apprentissage à l’utilisateur.
Ceci devrait permettre de gagner du temps sur les mots
que l’utilisateur utilise le plus souvent.

Le système de déduction
L’objectif de cet article est de montrer la pertinence des
interactions proposées pour saisir du texte par déduction
de mots. Pour ce faire, nous avons utilisé l’algorithme
de déduction le plus simple qui existe. Pour améliorer
les performances de déduction de notre système, il se-
rait maintenant intéressant d’utiliser des algorithmes de
déduction plus complexes, tel que celui utilisé dans Sha-
pewriter [19], qui prend en compte la forme du tracé pour
déduire le mot souhaité. Dans notre cas, l’utilisateur n’ef-
fectue pas de tracé sur l’écran, mais il serait possible de
construire celui-ci à partir des différents taps effectués par
l’utilisateur.

7

D’autre part, de manière à optimiser la déduction tout au
long de la saisie de l’utilisateur, nous utiliserons un sys-
tème de renforcement : dans ce type de système, chaque
mot à une probabilité d’apparition dans le dictionnaire uti-
lisé par le système de déduction. Chaque mot saisi par
l’utilisateur vient augmenté la probabilité de ce mot dans
le dictionnaire. Ainsi, plus un mot est utilisé par un utili-
sateur, plus il a de chance de ressortir dans les premières
places de la liste de déduction, et ce, même si l’utilisa-
teur le saisit avec un peu moins de précision. Ce sys-
tème de renforcement permet aussi d’ajouter des mots
au dictionnaire. Ainsi l’utilisateur pourra ajouter les mots
hors dictionnaire qu’il a l’habitude d’utiliser régulière-
ment (comme par exemple des noms propres).

Les mots hors dictionnaire
Notre système de déduction se base sur un corpus de mots
pour proposer un ensemble de mots à l’utilisateur. Donc si
le mot que souhaite saisir l’utilisateur n’appartient pas au
corpus de mots, le mot ne sera alors jamais proposé à l’uti-
lisateur. Pour faire face à ce problème, il est donc néces-
saire de proposer une interaction permettant à l’utilisateur
de pouvoir faire de la saisie caractère par caractère. L’in-
teraction envisagée consiste à rechercher le caractère de
la même manière que l’utilisateur cherche actuellement le
premier caractère du mot (c’est-à-dire par exploration du
clavier avec un doigt posé sur l’écran), puis pour le va-
lider sans passer par la phase de déduction, l’utilisateur
effectuera un double tap sur le caractère souhaité pour le
valider directement. Ainsi, en cas de problème répété avec
le système de déduction, l’utilisateur aura toujours la pos-
sibilité de saisir le mot voulu avec la saisie caractère par
caractère.

REMERCIEMENTS
Nous tenons à remercier les utilisateurs qui ont participé
à cette étude pour leur temps et leur intérêt. Nous remer-
cions également Claude GRIET, l’IJA et LACII pour leur
collaboration et leur disponibilité.

BIBLIOGRAPHIE
1. Aulagner G., François R., Martin B., Michel D. &

Raynal M. Floodkey: increasing software keyboard
keys by reducing needless ones without occultation.
In Proceedings of the 10th WSEAS international
conference on Applied computer science, World
Scientific and Engineering Academy and Society
(WSEAS) (2010), 412–417.

2. Bangor A., Kortum P. T. & Miller J. T. An empirical
evaluation of the system usability scale.
International Journal of Human-Computer
Interaction 24, 6 (2008), 574–594.

3. Bonner M. N., Brudvik J. T., Abowd G. D. &
Edwards W. K. No-look notes: accessible eyes-free
multi-touch text entry. In Pervasive Computing.
Springer, 2010, 409–426.

4. Cho H. & Kim C. Bubstack: A self-revealing
chorded keyboard on touch screens to type for
remote wall displays. In Proc. AH ’14, ACM (2014),
23:1–23:2.

5. Dunlop M. & Levine J. Multidimensional pareto
optimization of touchscreen keyboards for speed,
familiarity and improved spell checking. In Proc.
CHI ’12, ACM (2012), 2669–2678.

6. Kristensson P.-O. & Zhai S. Shark2: A large
vocabulary shorthand writing system for pen-based
computers. In Proc. UIST ’04, ACM (2004), 43–52.

7. MacKenzie I. S., Soukoreff R. W. & Helga J. 1
thumb, 4 buttons, 20 words per minute: Design and
evaluation of h4-writer. In Proc. UIST ’11, ACM
(2011), 471–480.

8. MacKenzie I. S. & Zhang S. X. The design and
evaluation of a high-performance soft keyboard. In
Proc. CHI ’99, ACM (1999), 25–31.

9. Mascetti S., Bernareggi C. & Belotti M.
Typeinbraille: Quick eyes-free typing on
smartphones. In Proc. ICCHP’12, Springer-Verlag
(2012), 615–622.

10. Merlin B. & Raynal M. Evaluation of spreadkey
system with motor impaired users. In Computers
Helping People with Special Needs. Springer, 2010,
112–119.

11. Oliveira J. a., Guerreiro T., Nicolau H., Jorge J. &
Gonçalves D. Brailletype: Unleashing braille over
touch screen mobile phones. In Proc. INTERACT’11,
Springer-Verlag (2011), 100–107.

12. Oney S., Harrison C., Ogan A. & Wiese J.
Zoomboard: A diminutive qwerty soft keyboard
using iterative zooming for ultra-small devices. In
Proc. CHI ’13, ACM (2013), 2799–2802.

13. Pollmann F., Wenig D. & Malaka R. Hoverzoom:
Making on-screen keyboards more accessible. In
Proc. CHI EA ’14, ACM (2014), 1261–1266.

14. Raynal M. & Truillet P. Fisheye keyboard: whole
keyboard displayed on pda. In Human-Computer
Interaction. Interaction Platforms and Techniques.
Springer, 2007, 452–459.

15. Raynal M. & Vigouroux N. Genetic algorithm to
generate optimized soft keyboard. In Proc. CHI EA
’05, ACM (2005), 1729–1732.

16. Vertanen K., Memmi H. & Kristensson P. O. The
feasibility of eyes-free touchscreen keyboard typing.
In Proc. ASSETS ’13, ACM (2013), 69:1–69:2.

17. Vigouroux N., Vella F., Truillet P. & Raynal M.
Evaluation of aac for text input by two groups of
subjects: able-bodied subjects and disabled motor
subjects. In 8th ERCIM Workshop "User Interfaces
for All", Vienne, Autriche (2004).

18. Zhai S., Hunter M. & Smith B. A. The metropolis
keyboard - an exploration of quantitative techniques
for virtual keyboard design. In Proc. UIST ’00, ACM
(2000), 119–128.

19. Zhai S., Kristensson P. O., Gong P., Greiner M., Peng
S. A., Liu L. M. & Dunnigan A. Shapewriter on the
iphone: From the laboratory to the real world. In
Proc. CHI EA ’09, ACM (2009), 2667–2670.

8

	Introduction
	Etat de l'art
	Saisie de texte sur dispositif mobile
	Solutions spécifiques pour déficients visuels

	Conception de DUCK
	Principes de conception
	Algorithme déductif
	Interactions gestuelles

	Matériel et méthodes
	Dispositif
	Participants
	Procédure

	Résultats
	Vitesse de frappe pour les mots et les phrases
	Saisie de mots sans validation
	Phase de validation
	Niveau de correction de la saisie de texte
	Préférences des utilisateurs

	Discussion
	Travaux futurs
	Les mots courts
	Le système de déduction
	Les mots hors dictionnaire

	Remerciements
	Bibliographie

